Homework 3

1. Let $\mathcal{R}_{n, k}$ be the set of all $k \times n$ matrices over \mathbb{F}_{q}, where $k=(1-h(p)-\varepsilon) n$. We had seen in lecture that the linear code corresponding to a uniformly randomly chosen $G \in \mathcal{R}_{n, k}$ is a $[n, k, d=p n]_{q}$ code with $1-\exp (-\Omega(n))$ probability. Note that we need $k \cdot n \cdot \log q=(1-h(p)-\varepsilon) n^{2} \log q$ bits of randomness to sample G. Our aim is to reduce the randomness required.
A Toeplitz matrix $M \in \mathbb{F}_{q}^{k^{\prime} \times n^{\prime}}$ has the following property: The entry $M_{i, j}=M_{i-1, j-1}$, for all $i \in\left\{2, \ldots, k^{\prime}\right\}$ and $j \in\left\{2, \ldots, n^{\prime}\right\}$. That is, the matrix M is completely defined by its first column and first row. So, the total number of Toeplitz matrices of dimension $k^{\prime} \times n^{\prime}$ over \mathbb{F}_{q} is $q^{n^{\prime}+k^{\prime}-1}$.
(a) (20 points) Let $\mathcal{T}_{k \times n}$ be all Toeplitz matrices of dimension $k \times n$ over \mathbb{F}_{q}. Note that, sampling a random matrix from the set $\mathcal{T}_{k \times n}$ takes only $(n+k-1) \log q=$ $(2-h(p)-\varepsilon) n \log q$ bits.
Prove that the linear code corresponding to a randomly chosen $G \in \mathcal{T}_{k \times n}$ is an $[n, k, d=p n]$ code with $1-\exp (-\Omega(n))$ probability.
[Hint: A possible approach will be to consider the random generator matrix $G \in \mathcal{T}_{k \times n}$ and consider a linear combination of its rows. Show that this random variable is uniform.]
(b) (20 points) Let $\mathcal{S}_{k \times(n-k)}$ be all matrices of the form $\left[I_{k \times k} \mid P_{k \times(n-k)}\right]$, where $P_{k \times(n-k)}$ is a Toeplitx matrix of dimension $k \times(n-k)$ over \mathbb{F}_{q}. Note that, sampling a random matrix from the set $\mathcal{S}_{k \times n}$ takes only $(n-1) \log q$ bits.
Prove that the linear code corresponding to a randomly chosen $G \in \mathcal{S}_{k \times n}$ is an $[n, k, d=p n]$ code with $1-\exp (-\Omega(n))$ probability.
[Hint: A possible approach will be to consider the corresponding parity check matrix $H=\left[-P_{k \times(n-k)}^{\top} \mid I_{(n-k) \times(n-k)}\right]$ and show that with high probability the sum of any $<d$ columns in H is not 0.]
